Trustworthy Al Systems

-- Image Segmentation

Instructor: Guangjing Wang

guangjingwang@usf.edu



mailto:guangjingwang@usf.edu

Last Lecture

* Image classification
e Convolutional neural network

* Some practices for project
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Homework 1: Paper Review

* Paper review is a basic task for a researcher

* Paper Summary

* Strengths

* Weaknesses

* Questions

* Future Opportunities

When you read a paper, thinking:
* Whatis the research problem and motivation?
* What are the challenges and technical contributions?
* How is the experimental evaluation?
* How is the related work, and overall presentation?
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Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

e — o

GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
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Y Y Y
No spatial extent No objects, just pixels Multiple Object Thisimage s CCO i domin
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Semantic Segmentation: Problem

GRASS, CAT, TREE,
SKY, ...

At test time, classify each pixel of a new image.

Paired training data: for each training image, Label each pixelin the image with a category label.
each pixel is labeled with a semantic category.
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Semantic Segmentation: Sliding Window

Classify center pixel
Extract patch with CNN
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Problem: Very inefficient! Not
reusing shared features between
overlapping patches
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Semantic Segmentation: Convolution (1)

Fullimage
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Encode the entire image with conv net, and do semantic segmentation on top

9/3/2024 CIS6930 Trustworthy Al Systems



Semantic Segmentation: Convolution (2)

— — —_— i

Y Scores: Predictions:
CxHxW HxW

Convolutions:
DxHxW

Potential problem?
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Semantic Segmentation: Convolution (3)

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 222
convolution Med-res: Med-res:
D,xH/4xW/4 D,xH/4xW/4
Low-res: q
D;x H/4 x W/4
Inlli:»lufc;M High-res: High-res: CXxHxW Predictions:
3xHx D, x H/2 x W/2 D, xH/2xW/2 HxW
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Upsampling

* Non-learnable upsampling

) “Bed of Nails” 1 ) 5
 Fill the same
. 12 0 01O
 Fill zeros -
] ) 3 4 3 01| 4
 Remember location then fill
0 0 0
oY ign it...
ou deS g Input: 2x 2 Output: 4 x 4

* Learnable upsampling
* Transposed convolution
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Upsampling: Transposed Convolution

Sum where

3 x 3 transposed convolution, stride 2 pad 1 output overlaps

Filter moves 2 pixels in the
output for every one pixel
in the input

Input gives
weight for

filter
Stride gives ratio between

movement in output and
input
Input: 2x2 Output: 4 x 4
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Learnable Upsampling: 1D Example

Output
In pUt Filter Output contains
ax copies of the filter
— weighted by the
/ X ay input, summing at
3 where at overlaps in
the output
5 y azf+ px
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Convolution as Matrix Multiplication

We can express convolution in Transposed convolution multiplies by the
terms of a matrix multiplication transpose of the same matrix:
Txa=Xd T d=X"a
0 z 0]  axr |
a y 0 ay
x y z 0 0 0|0 ay + bz z x| |la| |az+bx
0 0 z y 2 Oflc| |bx+cy+dz 0 yi |b by
d 0 =z bz
0] 0 0 0]

Example: 1D conv, kernel size=3,

: : Example: 1D transposed conv, kernel size=3,
stride=2, padding=1

stride=2, padding=0
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Semantic Segmentation: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with
Pooling, strided downsampling and upsampling inside the network!
convolution Med-res: Med-res:
D,xH/4xW/4 D,xH/4 xW/4
Low-res:
D;xH/4x W/4
Input: High-res: High-res:
3xHxW D,x H/2 x W/2 D,xH/2xW/2
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Upsampling:
Unpooling or strided
transposed convolution

Predictions:
HxW
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Take a break

What is Detectron?? KXEvE e

And what in the world is Panoptic segmentation?

https://www.youtube.com/watch?v=JIPbilHxFbl
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Object Detection: Classification + Localization

9/3/2024

Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss
4096 to 1000

Car:0.01 \

Multitask Loss + —Loss

Fully
Vector: \
Connected: ‘

4096 4096t04 Box
Coordinates — L2 Loss
. . (X) YJ W, h)
Treat localization as a T
regression problem! Correct box:
(X” Y’, W” h’)
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Object Detection

* What if there are multiple objects?

* Apply a CNN to many different crops of the image, CNN classifies each
crop as object or background
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R-CNN and Fast R-CNN

“Slow” R-CNN

SVMs

SVMs

SVMs

extracts around 2000

bottom-up region proposals,

9/3/2024

Input image

Object

category

Regions of
Interest (Rols)

from a proposal

method

“Backbone”

network:
AlexNet, VGG,
ResNet, etc

Linear +

softmax

Linear

CNN

= A2

=y Y

Box offset

Per-Region Network

Crop + Resize features

“convs” features

T
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ConvNet

Run whole image
through ConvNet

-

Input image
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Faster R-CNN: Make CNN Do Proposals

* Insert Region Proposal Network (RPN) to predict proposals from
features

Region Proposal Network

CNN
4 /

e T LA, —
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Region Proposal Network (1)

9/3/2024

Input Image
(e.g. 3x 640 x480)

J A 4 }@“%ZN f p",:
" WU i N » :
" " A \
Image features
(e.g.512x20x 15)
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Anchor is an object?

1x20x15
Conv

At each point, predict whether
the corresponding anchor
contains an object (binary

classification)

20



Region Proposal Network (2)

!‘ ¢ .
| i ] Anchor is an object?
- 1 " " ﬁ
e i ‘ SRR 1x20x15
kot | 4 A sleigin Conv
[N R T yenR SOV R .
E"# A e, SN Box corrections
) T — by, S TR 15 b ¥ e
! o RN \A: ] N |
In utl . For positive boxes, also predict a
(e.g 5 x 640 Xg480) g features corrections from the anchor to
h (e.g. 512X 20 x 15) the ground-truth box (regress 4

numbers per pixel)
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Faster R-CNN: Two Stages

Jointly train with 4 losses:
* RPN classify object / not object
* RPN regress box coordinates
* Final classification score (object classes)
* Final box coordinates

First stage: Run once perimage
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset
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proposzV /
Region Proposal Network'

CNN
4 /

Ay 77
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Instance Segmentation: Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C

// A
qf pd A P
d ] vd LA ’d

-1 11
//// / > //// - vdn” "
dip%

A 1/ /
1/ Rol Align / Conv // conv
L/
256 x14x 14 256x14x 14 Predict a mask for

each of C classes

Cx28x28

9/3/2024 CIS6930 Trustworthy Al Systems

o _ =

DOG, DOG, CAT
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Yolo: Single Stage Object Detector

Within each grid cell:
* Regress from each of the B base boxes
to afinal box with 5 numbers:
(dx, dy, dh, dw, confidence)

* Predict scores for each of C classes
(including background as a class)

* Looks a lot like RPN, but category-
specific!

Inputimage Divide image into grid * Output: 7x7x(5*B+C)
3XHxW 7x7

Image a set of base
boxes centered at each
grid cellHereB=3
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Yolo: Non-Max Suppression

* IfloU(P1, P2) > Threshold: P =argmax(C(p1), C(p2))

* Eliminating bounding boxes that have a high overlap with the box that has the
highest confidence score

QEEH
S x S grid on input 'ﬁ :‘ i Final detections

< V-

Class probability map
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YOLO: Model as a Regression Problem

YOLO

(YOU ONLY LOOK ONCE)

https://youtu.be/svn9-xV7wijk
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Single-shot VS Two-shot Detector

A
80

704

VOC2007 test mAP

Vi

Faster R-CNN, Ren 2015

73% mAP / 7 fps < 6.6x faster SSD300
74% mAP / 46 fps
Fast R-CNN, Girshick 2015
70% mAP /0.4 fps
R-CNN, Girshick 2014 YOLO, Redmon 2016
6% mAP /0.02 fps 66% mAP / 21 fps

All with VGGNet pretrained on ImageNet,

batch_size = 1 on Titan X
1 1 | L 1 )

9/3/2024

10 20 30 40 50
Speed (fps)

https://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf

C1S6930 Trustworthy Al Systems
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Object Detection: Evaluation Metrics

* Intersection over Union (loU)
* Predicted bounding box (A) and ground truth bounding box (B)

|A N B

J(4,B) = 155

* Average Precision (AP)

* The precision-recall curve that is created by varying the detection
threshold.

* mean Average Precision (mAP), which calculates AP for each class and
then take the average
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Midterm Project Group

* Please find your team member (1-3 members in a group)
* Sign your group in Canvas
 Random sign-up will be executed on Sep. 5.
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References

* https://cs231n.stanford.edu/slides/2024/lecture_9.pdf

* https://encord.com/blog/yolo-object-detection-guide/

* https://github.com/ultralytics/ultralytics

* https://github.com/facebookresearch/detectron2
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